Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Pharmacol ; 14: 1225697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502213

RESUMEN

Introduction: Network-based methods are promising approaches in systems toxicology because they can be used to predict the effects of drugs and chemicals on health, to elucidate the mode of action of compounds, and to identify biomarkers of toxicity. Over the years, the network biology community has developed a wide range of methods, and users are faced with the task of choosing the most appropriate method for their own application. Furthermore, the advantages and limitations of each method are difficult to determine without a proper standard and comparative evaluation of their performance. This study aims to evaluate different network-based methods that can be used to gain biological insight into the mechanisms of drug toxicity, using valproic acid (VPA)-induced liver steatosis as a benchmark. Methods: We provide a comprehensive analysis of the results produced by each method and highlight the fact that the experimental design (how the method is applied) is relevant in addition to the method specifications. We also contribute with a systematic methodology to analyse the results of the methods individually and in a comparative manner. Results: Our results show that the evaluated tools differ in their performance against the benchmark and in their ability to provide novel insights into the mechanism of adverse effects of the drug. We also suggest that aggregation of the results provided by different methods provides a more confident set of candidate genes and processes to further the knowledge of the drug's mechanism of action. Discussion: By providing a detailed and systematic analysis of the results of different network-based tools, we aim to assist users in making informed decisions about the most appropriate method for systems toxicology applications.

2.
Front Bioinform ; 3: 1101505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502697

RESUMEN

Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.

4.
iScience ; 26(3): 106094, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36895646

RESUMEN

Animal testing is the current standard for drug and chemicals safety assessment, but hazards translation to human is uncertain. Human in vitro models can address the species translation but might not replicate in vivo complexity. Herein, we propose a network-based method addressing these translational multiscale problems that derives in vivo liver injury biomarkers applicable to in vitro human early safety screening. We applied weighted correlation network analysis (WGCNA) to a large rat liver transcriptomic dataset to obtain co-regulated gene clusters (modules). We identified modules statistically associated with liver pathologies, including a module enriched for ATF4-regulated genes as associated with the occurrence of hepatocellular single-cell necrosis, and as preserved in human liver in vitro models. Within the module, we identified TRIB3 and MTHFD2 as a novel candidate stress biomarkers, and developed and used BAC-eGFPHepG2 reporters in a compound screening, identifying compounds showing ATF4-dependent stress response and potential early safety signals.

5.
Comput Struct Biotechnol J ; 21: 2110-2118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968019

RESUMEN

The use of molecular biomarkers to support disease diagnosis, monitor its progression, and guide drug treatment has gained traction in the last decades. While only a dozen biomarkers have been approved for their exploitation in the clinic by the FDA, many more are evaluated in the context of translational research and clinical trials. Furthermore, the information on which biomarkers are measured, for which purpose, and in relation to which conditions are not readily accessible: biomarkers used in clinical studies available through resources such as ClinicalTrials.gov are described as free text, posing significant challenges in finding, analyzing, and processing them by both humans and machines. We present a text mining strategy to identify proteomic and genomic biomarkers used in clinical trials and classify them according to the methodologies by which they are measured. We find more than 3000 biomarkers used in the context of 2600 diseases. By analyzing this dataset, we uncover patterns of use of biomarkers across therapeutic areas over time, including the biomarker type and their specificity. These data are made available at the Clinical Biomarker App at https://www.disgenet.org/biomarkers/, a new portal that enables the exploration of biomarkers extracted from the clinical studies available at ClinicalTrials.gov and enriched with information from the scientific literature. The App features several metrics that assess the specificity of the biomarkers, facilitating their selection and prioritization. Overall, the Clinical Biomarker App is a valuable and timely resource about clinical biomarkers, to accelerate biomarker discovery, development, and application.

6.
Front Immunol ; 14: 1282859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38414974

RESUMEN

Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results: Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion: The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Reposicionamiento de Medicamentos , Biología de Sistemas , Simulación por Computador
7.
Front Genet ; 13: 1006903, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276939

RESUMEN

Our knowledge of complex disorders has increased in the last years thanks to the identification of genetic variants (GVs) significantly associated with disease phenotypes by genome-wide association studies (GWAS). However, we do not understand yet how these GVs functionally impact disease pathogenesis or their underlying biological mechanisms. Among the multiple post-GWAS methods available, fine-mapping and colocalization approaches are commonly used to identify causal GVs, meaning those with a biological effect on the trait, and their functional effects. Despite the variety of post-GWAS tools available, there is no guideline for method eligibility or validity, even though these methods work under different assumptions when accounting for linkage disequilibrium and integrating molecular annotation data. Moreover, there is no benchmarking of the available tools. In this context, we have applied two different fine-mapping and colocalization methods to the same GWAS on major depression (MD) and expression quantitative trait loci (eQTL) datasets. Our goal is to perform a systematic comparison of the results obtained by the different tools. To that end, we have evaluated their results at different levels: fine-mapped and colocalizing GVs, their target genes and tissue specificity according to gene expression information, as well as the biological processes in which they are involved. Our findings highlight the importance of fine-mapping as a key step for subsequent analysis. Notably, the colocalizing variants, altered genes and targeted tissues differed between methods, even regarding their biological implications. This contribution illustrates an important issue in post-GWAS analysis with relevant consequences on the use of GWAS results for elucidation of disease pathobiology, drug target prioritization and biomarker discovery.

8.
Genes (Basel) ; 13(7)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35886042

RESUMEN

Understanding the molecular basis of major depression is critical for identifying new potential biomarkers and drug targets to alleviate its burden on society. Leveraging available GWAS data and functional genomic tools to assess regulatory variation could help explain the role of major depression-associated genetic variants in disease pathogenesis. We have conducted a fine-mapping analysis of genetic variants associated with major depression and applied a pipeline focused on gene expression regulation by using two complementary approaches: cis-eQTL colocalization analysis and alteration of transcription factor binding sites. The fine-mapping process uncovered putative causally associated variants whose proximal genes were linked with major depression pathophysiology. Four colocalizing genetic variants altered the expression of five genes, highlighting the role of SLC12A5 in neuronal chlorine homeostasis and MYRF in nervous system myelination and oligodendrocyte differentiation. The transcription factor binding analysis revealed the potential role of rs62259947 in modulating P4HTM expression by altering the YY1 binding site, altogether regulating hypoxia response. Overall, our pipeline could prioritize putative causal genetic variants in major depression. More importantly, it can be applied when only index genetic variants are available. Finally, the presented approach enabled the proposal of mechanistic hypotheses of these genetic variants and their role in disease pathogenesis.


Asunto(s)
Trastorno Depresivo Mayor , Sitios de Carácter Cuantitativo , Depresión , Trastorno Depresivo Mayor/genética , Genómica , Humanos , Factores de Transcripción/genética
9.
JMIR Cancer ; 8(3): e39003, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35816382

RESUMEN

BACKGROUND: A cancer diagnosis is a source of psychological and emotional stress, which are often maintained for sustained periods of time that may lead to depressive disorders. Depression is one of the most common psychological conditions in patients with cancer. According to the Global Cancer Observatory, breast and colorectal cancers are the most prevalent cancers in both sexes and across all age groups in Spain. OBJECTIVE: This study aimed to compare the prevalence of depression in patients before and after the diagnosis of breast or colorectal cancer, as well as to assess the usefulness of the analysis of free-text clinical notes in 2 languages (Spanish or Catalan) for detecting depression in combination with encoded diagnoses. METHODS: We carried out an analysis of the electronic health records from a general hospital by considering the different sources of clinical information related to depression in patients with breast and colorectal cancer. This analysis included ICD-9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification) diagnosis codes and unstructured information extracted by mining free-text clinical notes via natural language processing tools based on Systematized Nomenclature of Medicine Clinical Terms that mentions symptoms and drugs used for the treatment of depression. RESULTS: We observed that the percentage of patients diagnosed with depressive disorders significantly increased after cancer diagnosis in the 2 types of cancer considered-breast and colorectal cancers. We managed to identify a higher number of patients with depression by mining free-text clinical notes than the group selected exclusively on ICD-9-CM codes, increasing the number of patients diagnosed with depression by 34.8% (441/1269). In addition, the number of patients with depression who received chemotherapy was higher than those who did not receive this treatment, with significant differences (P<.001). CONCLUSIONS: This study provides new clinical evidence of the depression-cancer comorbidity and supports the use of natural language processing for extracting and analyzing free-text clinical notes from electronic health records, contributing to the identification of additional clinical data that complements those provided by coded data to improve the management of these patients.

10.
Comput Struct Biotechnol J ; 19: 2960-2967, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136095

RESUMEN

Thanks to the unbiased exploration of genomic variants at large scale, hundreds of thousands of disease-associated loci have been uncovered. In parallel, network-based approaches have proven to be essential to understand the molecular mechanisms underlying human diseases. The use of these approaches has been boosted by the abundance of information about disease associated genes and variants, high quality human interactomics data, and the emergence of new types of omics data. The DisGeNET Cytoscape App combines the capabilities of Cytoscape with those of DisGeNET, a knowledge platform based on a comprehensive catalogue of disease-associated genes and variants. The DisGeNET Cytoscape App contains functions to query, analyze, and visualize different network representations of the gene-disease and variant-disease associations available in DisGeNET. It supports a wide variety of applications through its query and filter functionalities, including the annotation of foreign networks generated by other apps or uploaded by the user. The new release of the DisGeNET Cytoscape App has been designed to support Cytoscape 3.x and incorporates novel distinctive features such as visualization and analysis of variant-disease networks, disease enrichment analysis for genes and variants, and analytic support through Cytoscape Automation. Moreover, the DisGeNET Cytoscape App features an API to access its core functionalities via the REST protocol fostering the development of reproducible and scalable analysis workflows based on DisGeNET data.

11.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800393

RESUMEN

eTRANSAFE is a research project funded within the Innovative Medicines Initiative (IMI), which aims at developing integrated databases and computational tools (the eTRANSAFE ToxHub) that support the translational safety assessment of new drugs by using legacy data provided by the pharmaceutical companies that participate in the project. The project objectives include the development of databases containing preclinical and clinical data, computational systems for translational analysis including tools for data query, analysis and visualization, as well as computational models to explain and predict drug safety events.

12.
Alzheimers Res Ther ; 13(1): 73, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33795014

RESUMEN

BACKGROUND: Major depression (MD) is the most prevalent psychiatric disease in the population and is considered a prodromal stage of the Alzheimer's disease (AD). Despite both diseases having a robust genetic component, the common transcriptomic signature remains unknown. METHODS: We investigated the cognitive and emotional behavioural responses in 3- and 6-month-old APP/PSEN1-Tg mice, before ß-amyloid plaques were detected. We studied the genetic and pathway deregulation in the prefrontal cortex, striatum, hippocampus and amygdala of mice at both ages, using transcriptomic and functional data analysis. RESULTS: We found that depressive-like and anxiety-like behaviours, as well as memory impairments, are already present at 3-month-old APP/PSEN1-Tg mutant mice together with the deregulation of several genes, such as Ciart, Grin3b, Nr1d1 and Mc4r, and other genes including components of the circadian rhythms, electron transport chain and neurotransmission in all brain areas. Extending these results to human data performing GSEA analysis using DisGeNET database, it provides translational support for common deregulated gene sets related to MD and AD. CONCLUSIONS: The present study sheds light on the shared genetic bases between MD and AD, based on a comprehensive characterization from the behavioural to transcriptomic level. These findings suggest that late MD could be an early manifestation of AD.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Comorbilidad , Depresión , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/genética , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Transcriptoma
13.
Biol Direct ; 16(1): 5, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33435983

RESUMEN

BACKGROUND: Drug-induced liver injury (DILI) is an adverse reaction caused by the intake of drugs of common use that produces liver damage. The impact of DILI is estimated to affect around 20 in 100,000 inhabitants worldwide each year. Despite being one of the main causes of liver failure, the pathophysiology and mechanisms of DILI are poorly understood. In the present study, we developed an ensemble learning approach based on different features (CMap gene expression, chemical structures, drug targets) to predict drugs that might cause DILI and gain a better understanding of the mechanisms linked to the adverse reaction. RESULTS: We searched for gene signatures in CMap gene expression data by using two approaches: phenotype-gene associations data from DisGeNET, and a non-parametric test comparing gene expression of DILI-Concern and No-DILI-Concern drugs (as per DILIrank definitions). The average accuracy of the classifiers in both approaches was 69%. We used chemical structures as features, obtaining an accuracy of 65%. The combination of both types of features produced an accuracy around 63%, but improved the independent hold-out test up to 67%. The use of drug-target associations as feature obtained the best accuracy (70%) in the independent hold-out test. CONCLUSIONS: When using CMap gene expression data, searching for a specific gene signature among the landmark genes improves the quality of the classifiers, but it is still limited by the intrinsic noise of the dataset. When using chemical structures as a feature, the structural diversity of the known DILI-causing drugs hampers the prediction, which is a similar problem as for the use of gene expression information. The combination of both features did not improve the quality of the classifiers but increased the robustness as shown on independent hold-out tests. The use of drug-target associations as feature improved the prediction, specially the specificity, and the results were comparable to previous research studies.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Aprendizaje Automático , Preparaciones Farmacéuticas/química , Biología de Sistemas , Humanos , Modelos Biológicos
14.
Bioinformatics ; 37(10): 1435-1443, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33185649

RESUMEN

MOTIVATION: Incorporating the temporal dimension into multimorbidity studies has shown to be crucial for achieving a better understanding of the disease associations. Furthermore, due to the multifactorial nature of human disease, exploring disease associations from different perspectives can provide a holistic view to support the study of their aetiology. RESULTS: In this work, a temporal systems-medicine approach is proposed for identifying time-dependent multimorbidity patterns from patient disease trajectories, by integrating data from electronic health records with genetic and phenotypic information. Specifically, the disease trajectories are clustered using an unsupervised algorithm based on dynamic time warping and three disease similarity metrics: clinical, genetic and phenotypic. An evaluation method is also presented for quantitatively assessing, in the different disease spaces, both the cluster homogeneity and the respective similarities between the associated diseases within individual trajectories. The latter can facilitate exploring the origin(s) in the identified disease patterns. The proposed integrative methodology can be applied to any longitudinal cohort and disease of interest. In this article, prostate cancer is selected as a use case of medical interest to demonstrate, for the first time, the identification of temporal disease multimorbidities in different disease spaces. AVAILABILITY AND IMPLEMENTATION: https://gitlab.com/agiannoula/diseasetrajectories. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Estudios de Cohortes , Humanos , Masculino , Análisis de Sistemas
15.
J Med Internet Res ; 22(12): e20920, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33337338

RESUMEN

BACKGROUND: Depressive disorders are the most common mental illnesses, and they constitute the leading cause of disability worldwide. Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed drugs for the treatment of depressive disorders. Some people share information about their experiences with antidepressants on social media platforms such as Twitter. Analysis of the messages posted by Twitter users under SSRI treatment can yield useful information on how these antidepressants affect users' behavior. OBJECTIVE: This study aims to compare the behavioral and linguistic characteristics of the tweets posted while users were likely to be under SSRI treatment, in comparison to the tweets posted by the same users when they were less likely to be taking this medication. METHODS: In the first step, the timelines of Twitter users mentioning SSRI antidepressants in their tweets were selected using a list of 128 generic and brand names of SSRIs. In the second step, two datasets of tweets were created, the in-treatment dataset (made up of the tweets posted throughout the 30 days after mentioning an SSRI) and the unknown-treatment dataset (made up of tweets posted more than 90 days before or more than 90 days after any tweet mentioning an SSRI). For each user, the changes in behavioral and linguistic features between the tweets classified in these two datasets were analyzed. 186 users and their timelines with 668,842 tweets were finally included in the study. RESULTS: The number of tweets generated per day by the users when they were in treatment was higher than it was when they were in the unknown-treatment period (P=.001). When the users were in treatment, the mean percentage of tweets posted during the daytime (from 8 AM to midnight) increased in comparison to the unknown-treatment period (P=.002). The number of characters and words per tweet was higher when the users were in treatment (P=.03 and P=.02, respectively). Regarding linguistic features, the percentage of pronouns that were first-person singular was higher when users were in treatment (P=.008). CONCLUSIONS: Behavioral and linguistic changes have been detected when users with depression are taking antidepressant medication. These features can provide interesting insights for monitoring the evolution of this disease, as well as offering additional information related to treatment adherence. This information may be especially useful in patients who are receiving long-term treatments such as people suffering from depression.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/terapia , Lingüística/métodos , Medios de Comunicación Sociales/normas , Antidepresivos/farmacología , Humanos , Lenguaje
17.
Stud Health Technol Inform ; 270: 921-925, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32570516

RESUMEN

People use language to express their thoughts and feelings, unveiling important aspects of their psychological traits and social interactions. Although there are several studies describing methodologies to create a collection of words in English related to depression and other conditions, in most of them the selection of words is not clinical or expert based. The objective of this study is twofold: firstly, to introduce a comprehensive collection of Spanish words commonly used by patients suffering from depression, which will be available as a free open source for research purposes (GitHub), and secondly, to study the usefulness of this collection of words in identifying social media posts that could be indicative of patients suffering from depression. The level of agreement among medical doctors to determine the best words that should be used to select tweets related to depression was low. This finding may be due to the complexity of depression and the extraordinary diversity in the way people express themselves when describing their illness. It is critical to perform a thorough analysis of the specific language used in each condition, before deciding the best words to be used for filtering the tweets in each disease. As our study shows, the words supposedly more linked to depression are very common words used in other contexts, and consequently less specific for detecting depressive users. In addition, grammatical gender forms should be considered when analysing some languages such as Spanish.


Asunto(s)
Depresión , Medios de Comunicación Sociales , Identidad de Género , Humanos , Lenguaje
19.
Chem Res Toxicol ; 33(1): 7-9, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31909603

RESUMEN

Omics data have been increasingly generated with limited demonstrated value in drug safety assessment. The TransQST consortium was launched to use omics and other data in mechanistic-based quantitative systems toxicology (QST) models to evaluate their potential use in species translation.


Asunto(s)
Desarrollo de Medicamentos , Modelos Biológicos , Farmacología , Biología de Sistemas , Toxicología , Animales , Humanos , Medición de Riesgo
20.
F1000Res ; 92020.
Artículo en Inglés | MEDLINE | ID: mdl-34367618

RESUMEN

Copy number variations (CNVs) are major causative contributors both in the genesis of genetic diseases and human neoplasias. While "High-Throughput" sequencing technologies are increasingly becoming the primary choice for genomic screening analysis, their ability to efficiently detect CNVs is still heterogeneous and remains to be developed. The aim of this white paper is to provide a guiding framework for the future contributions of ELIXIR's recently established human CNV Community, with implications beyond human disease diagnostics and population genomics. This white paper is the direct result of a strategy meeting that took place in September 2018 in Hinxton (UK) and involved representatives of 11 ELIXIR Nodes. The meeting led to the definition of priority objectives and tasks, to address a wide range of CNV-related challenges ranging from detection and interpretation to sharing and training. Here, we provide suggestions on how to align these tasks within the ELIXIR Platforms strategy, and on how to frame the activities of this new ELIXIR Community in the international context.


Asunto(s)
Biología Computacional , Variaciones en el Número de Copia de ADN , Variaciones en el Número de Copia de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA